Visual and nonvisual contributions to three-dimensional heading selectivity in the medial superior temporal area.

نویسندگان

  • Yong Gu
  • Paul V Watkins
  • Dora E Angelaki
  • Gregory C DeAngelis
چکیده

Robust perception of self-motion requires integration of visual motion signals with nonvisual cues. Neurons in the dorsal subdivision of the medial superior temporal area (MSTd) may be involved in this sensory integration, because they respond selectively to global patterns of optic flow, as well as translational motion in darkness. Using a virtual-reality system, we have characterized the three-dimensional (3D) tuning of MSTd neurons to heading directions defined by optic flow alone, inertial motion alone, and congruent combinations of the two cues. Among 255 MSTd neurons, 98% exhibited significant 3D heading tuning in response to optic flow, whereas 64% were selective for heading defined by inertial motion. Heading preferences for visual and inertial motion could be aligned but were just as frequently opposite. Moreover, heading selectivity in response to congruent visual/vestibular stimulation was typically weaker than that obtained using optic flow alone, and heading preferences under congruent stimulation were dominated by the visual input. Thus, MSTd neurons generally did not integrate visual and nonvisual cues to achieve better heading selectivity. A simple two-layer neural network, which received eye-centered visual inputs and head-centered vestibular inputs, reproduced the major features of the MSTd data. The network was trained to compute heading in a head-centered reference frame under all stimulus conditions, such that it performed a selective reference-frame transformation of visual, but not vestibular, signals. The similarity between network hidden units and MSTd neurons suggests that MSTd may be an early stage of sensory convergence involved in transforming optic flow information into a (head-centered) reference frame that facilitates integration with vestibular signals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Visual selectivity for heading in the macaque ventral intraparietal area.

The patterns of optic flow seen during self-motion can be used to determine the direction of one's own heading. Tracking eye movements which typically occur during everyday life alter this task since they add further retinal image motion and (predictably) distort the retinal flow pattern. Humans employ both visual and nonvisual (extraretinal) information to solve a heading task in such case. Li...

متن کامل

Causal links between dorsal medial superior temporal area neurons and multisensory heading perception.

The dorsal medial superior temporal area (MSTd) in the extrastriate visual cortex is thought to play an important role in heading perception because neurons in this area are tuned to both optic flow and vestibular signals. MSTd neurons also show significant correlations with perceptual judgments during a fine heading direction discrimination task. To test for a causal link with heading percepti...

متن کامل

MST responses to pursuit across optic flow with motion parallax.

Self-movement creates the patterned visual motion of optic flow with a focus of expansion (FOE) that indicates heading direction. During pursuit eye movements, depth cues create a retinal flow field that contains multiple FOEs, potentially complicating heading perception. Paradoxically, human heading perception during pursuit is improved by depth cues. We have studied medial superior temporal (...

متن کامل

3D Visual Response Properties of MSTd Emerge from an Efficient, Sparse Population Code.

UNLABELLED Neurons in the dorsal subregion of the medial superior temporal (MSTd) area of the macaque respond to large, complex patterns of retinal flow, implying a role in the analysis of self-motion. Some neurons are selective for the expanding radial motion that occurs as an observer moves through the environment ("heading"), and computational models can account for this finding. However, am...

متن کامل

Multimodal coding of three-dimensional rotation and translation in area MSTd: comparison of visual and vestibular selectivity.

Recent studies have shown that most neurons in the dorsal medial superior temporal area (MSTd) signal the direction of self-translation (i.e., heading) in response to both optic flow and inertial motion. Much less is currently known about the response properties of MSTd neurons during self-rotation. We have characterized the three-dimensional tuning of MSTd neurons while monkeys passively fixat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 26 1  شماره 

صفحات  -

تاریخ انتشار 2006